Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Copper(II) and cadmium(II) isothiocyanate coordination polymers with 4,4'-bi-1,2,4-triazole

Evgeniy V. Govor, ${ }^{\text {a }}$ Andrey B. Lysenko, ${ }^{a}$ Konstantin V. Domasevitch, ${ }^{\text {a* }}$ Eduard B. Rusanov ${ }^{\text {b }}$ and Alexander N. Chernega ${ }^{\text {b }}$

${ }^{\text {a }}$ Inorganic Chemistry Department, Kiev University, Volodimirska Street 64, Kiev 01033, Ukraine, and ${ }^{\mathbf{b}}$ Institute of Organic Chemistry, Murmanskaya Street 5, Kiev 02094, Ukraine
Correspondence e-mail: dk@univ.kiev.ua
Received 10 December 2007
Accepted 14 January 2008
Online 9 February 2008

The coordination polymers catena-poly[[[(4,4'-bi-1,2,4-triazoleκN^{1})bis(thiocyanato- κN)copper(II)]- $\mu-4,4^{\prime}$-bi-1,2,4-triazole$\left.\kappa^{2} N^{1}: N^{1^{\prime}}\right]$ dihydrate $],\left\{\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{6}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (I), and poly[tetrakis $\left(\mu-4,4^{\prime}\right.$-bi-1,2,4-triazole- $\left.\kappa^{2} N^{1}: N^{1^{\prime}}\right) \operatorname{bis}(\mu$-thiocyanato $-\kappa^{2} N: S$)tetrakis(thiocyanato- κN)tricadmium(II)], $\left[\mathrm{Cd}_{3}-\right.$ (NCS) $\left.)_{6}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{6}\right)_{4}\right]_{n}$, (II), exhibit chain and two-dimensional layer structures, respectively. The differentiation of the Lewis acidic nature of $\mathrm{Cu}^{\text {II }}$ and $\mathrm{Cd}^{\mathrm{II}}$ has an influence on the coordination modes of the triazole and thiocyanate ligands, leading to topologically different polymeric motifs. In (I), copper ions are linked by bitriazole $N: N^{\prime}$-bridges into zigzag chains and the tetragonal-pyramidal CuN_{5} environment is composed of two thiocyanate N atoms and three triazole N atoms [basal $\mathrm{Cu}-\mathrm{N}=1.9530$ (18) -2.0390 (14) \AA and apical $\mathrm{Cu}-\mathrm{N}=2.2637(15) \AA$ A . The structure of (II) contains two types of crystallographically unique $\mathrm{Cd}^{\mathrm{II}}$ atoms. One type lies on an inversion center in a distorted CdN_{6} octahedral environment, with bitriazole ligands in the equatorial plane and terminal isothiocyanate N atoms in the axial positions. The other type lies on a general position and forms centrosymmetric binuclear $\left[\mathrm{Cd}_{2}\left(\mu-\mathrm{NCS}-\kappa^{2} N: S\right)_{2}(\mathrm{NCS})_{2}\right]$ units (tetragonal-pyramidal $\mathrm{CdN}_{4} \mathrm{~S}$ coordination). $N: N^{\prime}$-Bridging bitriazole ligands link the Cd centers into a flat (4,4)-network.

Comment

The growing interest in the structural design of $M^{\mathrm{II}}-\mathrm{bi}-1,2,4-$ triazole coordination polymers (where $M=\mathrm{Fe}^{\mathrm{II}}, \mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Cd}^{\mathrm{II}}$) has been dictated by their importance in the fields of magnetism and fluorescence (Janiak, 2000). The bitopic bitriazoles propagate local coordination environments around either discrete metal ions or polynuclear secondary building units as nodes, forming metal-organic frameworks (MOFs).

The adjacent N atoms (N 1 and N 2) in 1,2,4-triazole derivatives are well suited for binding together transition metal cations, leading to characteristic polynuclear clusters, viz. dimers (Drabent et al., 2004), linear (Liu et al., 1999) and triangular trimers (Virovets et al., 1997), etc. Recently, for the $\mathrm{Cu}^{\mathrm{II}}-\mathrm{btr}-$ X^{-}systems ($X=\mathrm{Cl}$ and Br ; btr is $4,4^{\prime}$-bi-1,2,4-triazole), we

(I)

(II)
have demonstrated how such cluster motifs may be rationally integrated in the MOFs (Lysenko et al., 2006, 2007). Obviously, the nature of the anion is a crucial factor that determines the resulting structure and net topology of the M^{II}-btr polymers. In this context, a very interesting situation could be realized in the case of pseudohalide anions, e.g. NCS^{-}, that are complementary to a short triazole linker, and such a combination of neutral and anionic bridges can support the formation of triangular $\mathrm{Cu}^{\mathrm{II}}\left\{\left[\mathrm{Cu}_{3}\left(\mu_{3}-\mathrm{OH}\right)\left(\mu_{2}-L\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{NCS})_{3}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot-\right.$ $\mathrm{H}_{2} \mathrm{O}$; Liu et al., 2003\} and linear trinuclear $\mathrm{Cd}^{\mathrm{II}}$ cores $\left\{\left[\left\{\mathrm{Cd}_{3}\left(\mu_{2}-L\right)_{4}\left(\mu_{2}-\mathrm{NCS}\right)_{2}\right\}\left(\mu_{2}-\mathrm{NCS}\right)_{2}(\mathrm{NCS})_{2}\right] ; L\right.$ is 4 -amino-3,5dimethyltriazole; Yi et al., 2004\}. We report here the crystal

Figure 1
A portion of the structure of (I), showing the atom-labeling scheme and the copper coordination environment. Displacement ellipsoids are drawn at the 40% probability level. The dashed line represents an intermolecular hydrogen bond. [Symmetry code: (i) $-x, y+\frac{1}{2},-z+\frac{3}{2}$.]
structures of two new coordination polymers, viz. $\left[\mathrm{Cu}(\mathrm{NCS})_{2^{-}}\right.$ $\left.(\mathrm{btr})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (I), and $\left[\mathrm{Cd}_{3}(\mathrm{NCS})_{6}(\mathrm{btr})_{4}\right]$, (II), that build on these ideas.

In (I), the Cu 1 centers are located in general positions and possess a distorted tetragonal-pyramidal environment of five N atoms. The basal sites of the pyramid are occupied by two terminal trans-coordinated isothiocyanate groups and one N atom each from one terminal and one $N^{1}, N^{1^{\prime}}$-bidentate btr molecules, while the apical position is occupied by the other N atom of a symmetry-related bidentate btr ligand (Fig. 1 and Table 1). The $\mathrm{Cu}-\mathrm{N}_{\mathrm{NCS}}$ bond lengths are slightly shorter than those observed in the similar five-coordinate complexes $\mathrm{Cu}(\mathrm{NCS})_{2}(3 \text {-methylpyridine })_{3} \quad[1.973$ (9) and 2.194 (13) $\AA]$

Figure 2
A view of the zigzag coordination chain in the structure of (I), showing the bridging function of the ligand and the principal hydrogen bonding (projection on the $b c$ plane). The bitriazole H atoms have been omitted for clarity and N atoms are shaded grey. [Symmetry codes: (i) $-x, y+\frac{1}{2},-z+\frac{3}{2}$; (ii) $x, y+1, z$.]
and $\quad \mathrm{Cu}(\mathrm{NCS})_{2}(3,4 \text {-dimethylpyridine })_{3} \quad[1.981$ (13) and 2.215 (17) Å] (Kabesova \& Koziskova, 1989).

The N, N^{\prime}-bidentate btr molecules link adjacent Cu atoms [related by the symmetry operation $\left(-x, y+\frac{1}{2},-z+\frac{3}{2}\right)$] at a distance of 9.1198 (5) \AA. Their cis location around the metal center leads to the formation of zigzag $\left[\mathrm{Cu}\left(\mu_{2}-\mathrm{btr}\right)\right]_{n}^{2 n+}$ chains running along the b axis (Fig. 2), with corresponding $\mathrm{Cu} \cdots \mathrm{Cu} \cdots \mathrm{Cu}$ angles of $86.81(1)^{\circ}$ and separations between the translating units [related by $(x, y+1, z)$] of $12.5332(9) \AA$. Neighboring chains, which are related by translation along the a axis, afford tight packing with a closest $\mathrm{Cu} 1 \cdots \mathrm{Cu} 1(x+1, y$, z) distance of 6.9047 (4) \AA. The $N^{1}, N^{1^{\prime}}$-bidentate coordination mode of btr is widely found (Vreugdenhil et al., 1985); however, the polymeric motif with two types of mono- and bidentate-coordinated btr molecules similar to (I) is uncommon. The only structural precedent is $[\mathrm{Mn}(\mathrm{NCS})$ -$\left.\left(\mu_{2}-\mathrm{btr}\right)(\mathrm{btr})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NCS}$ (Zilverentant et al., 1998).

The uncoordinated water molecules in (I) are involved in hydrogen-bonding interactions with one another $\left[\mathrm{O} 1 \cdots \mathrm{O} 2^{\mathrm{ii}}=\right.$ 2.914 (3) \AA; symmetry code: (ii) $x, y+1, z$; Fig. 2]. This 'dimer' can be considered as a donor of two hydrogen bonds towards two btr molecules $[\mathrm{O} 1 \cdots \mathrm{~N} 11=2.997$ (3) \AA and $\mathrm{O} 2 \cdots \mathrm{~N} 2=$ 2.933 (3) \AA] with one weak hydrogen bond towards the S atom of an NCS^{-}anion $\left[\mathrm{O} 2 \cdots \mathrm{~S} 2^{\mathrm{iii}}=3.331\right.$ (2) \AA; symmetry code: (iii) $x+1, y, z$; Table 2] (Desiraju \& Steiner, 1999). These interactions lead to interconnection of the coordination chains into two-dimensional hydrogen-bonded layers aligned parallel to the $b c$ plane.

The Lewis softness of the Cd^{2+} centers in (II) and their higher affinity towards NCS^{-}anions, either as N - or S -atom

Figure 3
A portion of the structure of (II), showing the atom-labeling scheme and the cadmium coordination environments. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $x, y, z-1$; (iii) $-x,-y,-z$; (iv) $x, y, z+1$.]
donors, effects the formation of an even more complicated polymeric motif as compared with the copper(II) complex. The structure of (II) involves two types of coordination environments (Fig. 3). Two equivalent Cd1 ions [related by the symmetry operation $(-x+2,-y+1,-z+1)]$ are linked by a pair of thiocyanate $N: S$-bridges into centrosymmetric dimers, and the distorted tetragonal-pyramidal $\mathrm{N}_{4} \mathrm{~S}$ environment of the Cd 1 center is completed by two triazole N -atom donors with an N atom of a terminal thiocyanate group in the apical position (Fig. 4). Within these double bridged $\mathrm{Cd}_{2}\left(\mu_{2}-\mathrm{NCS}\right)_{2}$ dimers, the $\mathrm{Cd} \cdots \mathrm{Cd}$ distance $[5.7044$ (9) \AA] is similar to those observed in the related complex $\left[\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4}\right]\left[\mathrm{Cd}\left(\mu_{2}-\mathrm{NCS}\right)_{2^{-}}\right.$ (NCS)] (5.715 and $5.856 \AA$; Taniguchi \& Ouch, 1989). The eight-membered $\mathrm{Cd}_{2}\left(\mu_{2}-\mathrm{NCS}\right)_{2}$ ring possesses a 'chair' conformation [the displacement of atom Cd1 out of the $(\mathrm{NCS})_{2}$ plane is $0.544 \AA$] , and two terminal NCS^{-}anions are attached to the Cd 1 ions at the opposite sides of the metallocycle. This $\mathrm{Cd}_{2}\left(\mu_{2}-\mathrm{NCS}\right)_{2}(\mathrm{NCS})_{2}$ arrangement is rarely found and has only two precedents, in $\left[\left\{\mathrm{Cd}_{3}\left(\mu_{2}-\mathrm{tr}\right)_{4}\left(\mu_{2}-\mathrm{Cl}\right)_{2}\right\}\right.$ -$\left.\left(\mu_{2}-\mathrm{NCS}\right)_{2}(\mathrm{NCS})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (tr is 4-amino-3,5-diethyltriazole; Yi et al., 2004) and $\left[\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4}\right]\left[\mathrm{Cd}\left(\mu_{2}-\mathrm{NCS}\right)_{2}(\mathrm{NCS})\right]$ (Taniguchi \& Ouch, 1989), with octahedral and tetragonal-pyramidal metal atoms, respectively.

The coordination environment of the second unique Cd ion is much simpler. Atom Cd 2 is located on a center of inversion and has a slightly distorted octahedral environment involving

Figure 4
The two-dimensional network in the structure of (II) contains two types of nodal units, viz. $\left[(\mathrm{Cd} 1)_{2}(\mu-\mathrm{NCS})_{2}(\mathrm{NCS})_{2}\right]$ and Cd 2 , linked by $N^{1}: N^{1^{\prime}}$. bidentate bitriazole bridges.
four triazole N -atom donors in the equatorial plane and two isothiocyanate groups in the axial positions (Table 3).

Each $(\mathrm{Cd} 1)_{2}(\mu-\mathrm{NCS})_{2}$ unit and discrete Cd2 ion coordinates four triazole groups and this predetermines parity of their structural functions; both of them (in a 1:1 proportion) provide four-connected nodes for a planar (4,4)-network, and the corresponding diagonal $\mathrm{Cd} 2 \cdots \mathrm{Cd} 2^{\text {iv }}$ [symmetry code: (iv) $x, y, z+1$] separations are $13.836 \AA$ (c parameter of the unit cell) (Figs. 3 and 4). Adjacent layers are shifted and stacked at a distance of $5.20 \AA$. The terminal coordinating isothiocyanate groups containing atoms S1 and S2 are directed inside the pores of the adjacent layer at $(x+1, y, z)$ to afford interdigitation of the successive nets.

In both structures, the btr molecules display an almost orthogonal orientation of the two triazole groups, which does not depend on the coordination mode of the ligand. The dihedral angles between the planes of the triazole heterocycles lie in the range $77.58(4)-89.99(4)^{\circ}$, in good agreement with those reported for free 4,4'-bi-1,2,4-triazole [88.12 (1) ${ }^{\circ}$; Domiano, 1977].

These results demonstrate that the btr molecule in combination with the nucleophilic isothiocyanate anion (N-terminal and N, S-bidentate roles) as coligand adopts monodentate and $N^{1}, N^{1^{\prime}}$-bidentate coordination behavior toward $\mathrm{Cu}^{\mathrm{II}}$ and $\mathrm{Cd}^{\mathrm{II}}$, leading to the formation of low-dimensional coordination polymers.

Experimental

All materials were of reagent grade and were used as received. The btr ligand was prepared according to a reported procedure (Bartlett et al., 1967). The precipitate obtained by mixing aqueous $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.0250 \mathrm{~g}, 0.100 \mathrm{mmol}), \mathrm{CsSCN}(0.0382 \mathrm{~g}, 0.200 \mathrm{mmol})$ and btr $(0.0136 \mathrm{~g}, 0.100 \mathrm{mmol})$ solutions was recrystallized from water to afford green prisms of (I) (yield 83%). Evaporation of an aqueous solution (3 ml) of $\mathrm{Cd}(\mathrm{SCN})_{2}(0.0457 \mathrm{~g}, 0.200 \mathrm{mmol})$ and btr $(0.0136 \mathrm{~g}, 0.100 \mathrm{mmol})$ in a desiccator over CaCl_{2} for a few days afforded colorless prisms of (II) (yield 98\%).

Compound (I)

Crystal data

$\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{6}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=488.00$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.9047$ (4) A
$b=12.5332$ (9) \AA
$c=21.8652(18) \AA$

Data collection

Stoe IPDS diffractometer
18528 measured reflections 4417 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.051$
$S=0.95$
4417 reflections
262 parameters
H -atom parameters constrained
$V=1892.2(2) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=1.42 \mathrm{~mm}^{-1}$
$T=213$ (2) K
$0.20 \times 0.18 \times 0.18 \mathrm{~mm}$

4019 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.043$
$\Delta \rho_{\text {max }}=0.26 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 1806 Friedel pairs
Flack parameter: -0.001 (8)

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Cu} 1-\mathrm{N} 13$	$1.9530(18)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.0390(14)$
$\mathrm{Cu} 1-\mathrm{N} 14$	$1.9678(18)$	$\mathrm{Cu} 1-\mathrm{N} 5^{\mathrm{i}}$	$2.2637(15)$
$\mathrm{Cu} 1-\mathrm{N} 7$	$2.0124(15)$		
$\mathrm{N} 13-\mathrm{Cu} 1-\mathrm{N} 14$	$171.45(8)$	$\mathrm{N} 13-\mathrm{Cu} 1-\mathrm{N} 1$	$88.87(7)$
$\mathrm{N} 13-\mathrm{Cu} 1-\mathrm{N} 7$	$91.90(7)$	$\mathrm{N} 14-\mathrm{Cu} 1-\mathrm{N} 1$	$87.91(7)$
$\mathrm{N} 14-\mathrm{Cu} 1-\mathrm{N} 7$	$89.27(7)$	$\mathrm{N} 7-\mathrm{Cu} 1-\mathrm{N} 1$	$165.65(7)$
$\mathrm{C} 1-\mathrm{N} 3-\mathrm{N} 6-\mathrm{C} 4$	$88.1(3)$	$\mathrm{C} 6-\mathrm{N} 9-\mathrm{N} 12-\mathrm{C} 8$	$85.2(3)$

Symmetry code: (i) $-x, y+\frac{1}{2},-z+\frac{3}{2}$.

Compound (II)

Crystal data

$\left[\mathrm{Cd}_{3}(\mathrm{NCS})_{6}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{6}\right)_{4}\right]$	$\gamma=82.847(11)^{\circ}$
$M_{r}=1230.21$	$V=1008.5(3) \AA^{3}$
Triclinic, $P \overline{1}$	$Z=1$
$a=7.0920(10) \AA$	Mo $K \alpha$ radiation
$b=10.4867(18) \AA$	$\mu=1.94 \mathrm{~mm}^{-1}$
$c=13.836(2) \AA$	$T=298(2) \mathrm{K}$
$\alpha=87.440(18)^{\circ}$	$0.40 \times 0.25 \times 0.12 \mathrm{~mm}$
$\beta=81.158(16)^{\circ}$	

$\beta=81.158(16)^{\circ}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.510, T_{\text {max }}=0.800$
5237 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
277 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.59 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.63 \mathrm{e}^{-3}$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1W $\cdots \mathrm{N} 11$	0.85	2.21	$2.997(3)$	154
O1-H2W $W 22^{\mathrm{ii}}$	0.85	2.08	$2.914(3)$	166
O2-H3W \cdots S2	0.85	2.52	$3.331(2)$	159
$\mathrm{O} 2-\mathrm{H} 4 W \cdots \mathrm{~N} 2$	0.85	2.10	$2.933(3)$	166

Symmetry codes: (ii) $x, y+1, z$; (iii) $x+1, y, z$.

All H atoms were located in difference maps and included as riding atoms, with $\mathrm{O}-\mathrm{H}$ distances constrained to $0.85 \AA$ and $\mathrm{C}-\mathrm{H}$ distances constrained to $0.94 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C})$ and $1.5 U_{\text {eq }}(\mathrm{O})$.

For (I), data collection: IPDS Software (Stoe \& Cie, 2000); cell refinement: IPDS Software; data reduction: IPDS Software; software used to prepare material for publication: WinGX (Farrugia, 1999). For (II), data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to

Table 3
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$) for (II).

Cd1-N14	2.178 (4)	$\mathrm{Cd} 1-\mathrm{S} 3^{\text {i }}$	2.6142 (10)
Cd1-N15	2.261 (3)	Cd2-N13	2.256 (3)
Cd1-N8	2.303 (2)	$\mathrm{Cd} 2-\mathrm{N} 5{ }^{\text {ii }}$	2.347 (3)
Cd1-N1	2.335 (3)	Cd2-N11	2.386 (3)
N14-Cd1-N15	101.05 (14)	$\mathrm{N} 8-\mathrm{Cd} 1-\mathrm{S} 3^{\text {i }}$	85.87 (7)
N14-Cd1-N8	98.51 (12)	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{S} 3^{\mathrm{i}}$	159.25 (8)
N15-Cd1-N8	159.79 (13)	$\mathrm{N} 13-\mathrm{Cd} 2-\mathrm{N} 5{ }^{\text {ii }}$	91.38 (11)
N14-Cd1-N1	98.97 (14)	$\mathrm{N} 5{ }^{\text {iii }}-\mathrm{Cd} 2-\mathrm{N} 11$	85.15 (9)
N15-Cd1-N1	82.24 (10)	$\mathrm{N} 13-\mathrm{Cd} 2-\mathrm{N} 1{ }^{\text {iii }}$	91.91 (11)
$\mathrm{N} 8-\mathrm{Cd} 1-\mathrm{N} 1$	89.75 (9)		
C6-N9-N10-C7	-83.6 (4)		

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $x, y, z-1$; (iii) $-x,-y,-z$.
refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999).

EVG acknowledges support from a stipendial program 'Zavtra.UA' of the Victor Pinchuk Foundation.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3120). Services for accessing these data are described at the back of the journal.

References

Bartlett, R. K. \& Humphrey, I. R. (1967). J. Chem. Soc. C, 17, 1664-1666.
Brandenburg, K. (1999). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond, pp. 40-107, 246-252. Oxford University Press.
Domiano, P. (1977). Cryst. Struct. Commun. 6, 503-506.
Drabent, K., Bialonska, A. \& Ciunik, Z. (2004). Inorg. Chem. Commun. 7, 224-227.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Janiak, C. (2003). Dalton Trans. pp. 2781-2804.
Kabesova, M. \& Koziskova, Z. (1989). Collect. Czech. Chem. Commun. 54, 1800-1807.
Liu, J.-C., Fu, D.-G., Zhuang, J.-Z., Duan, C.-Y. \& You, X.-Z. (1999). J. Chem. Soc. Dalton Trans. pp. 2337-2342.
Liu, J.-C., Guo, G.-C., Huang, J.-S. \& You, X.-Z. (2003). Inorg. Chem. 42, 235243.

Lysenko, A. B., Govor, E. V. \& Domasevitch, K. V. (2007). Inorg. Chim. Acta, 360, 55-60.
Lysenko, A. B., Govor, E. V., Krautscheid, H. \& Domasevitch, K. V. (2006). Dalton Trans. pp. 3772-3776.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2000). IPDS Software. Stoe \& Cie GmbH, Darmstadt, Germany.
Taniguchi, M. \& Ouch, A. (1989). Bull. Chem. Soc. Jpn, 62, 424-428.
Virovets, A. V., Podberezskaya, N. V. \& Lavrenova, L. G. (1997). Zh. Strukt. Khim. (J. Struct. Chem.), 38, 532-538.
Vreugdenhil, W., Gorter, S., Haasnoot, J. G. \& Reedijk, J. (1985). Polyhedron, 4, 1769-1775.
Yi, L., Ding, B., Zhao, B., Cheng, P., Liao, D.-Z. \& Jiang, S.-P. Y. (2004). Inorg. Chem. 43, 33-43.
Zilverentant, C. L., Driessen, W. L., Haasnoot, J. G., Kolnaar, J. J. A. \& Reedijk, J. (1998). Inorg. Chim. Acta, 282, 257-260.

